Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.559
Filtrar
1.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Gen Comp Endocrinol ; 352: 114514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582175

RESUMO

Hormonal influence on hepatic function is a critical aspect of whole-body energy balance in vertebrates. Catecholamines and corticosteroids both influence hepatic energy balance via metabolite mobilization through glycogenolysis and gluconeogenesis. Elasmobranchs have a metabolic organization that appears to prioritize the mobilization of hepatic lipid as ketone bodies (e.g. 3-hydroxybutyrate [3-HB]), which adds complexity in determining the hormonal impact on hepatic energy balance in this taxon. Here, a liver perfusion was used to investigate catecholamine (epinephrine [E]) and corticosteroid (corticosterone [B] and 11-deoxycorticosterone [DOC]) effects on the regulation of hepatic glucose and 3-HB balance in the North Pacific Spiny dogfish, Squalus suckleyi. Further, hepatic enzyme activity involved in ketogenesis (3-hydroxybutyrate dehydrogenase), glycogenolysis (glycogen phosphorylase), and gluconeogenesis (phosphoenolpyruvate carboxykinase) were assessed in perfused liver tissue following hormonal application to discern effects on hepatic energy flux. mRNA transcript abundance key transporters of glucose (glut1 and glut4) and ketones (mct1 and mct2) and glucocorticoid function (gr, pepck, fkbp5, and 11ßhsd2) were also measured to investigate putative cellular components involved in hepatic responses. There were no changes in the arterial-venous difference of either metabolite in all hormone perfusions. However, perfusion with DOC increased gr transcript abundance and decreased flow rate of perfusions, suggesting a regulatory role for this corticosteroid. Phosphoenolpyruvate carboxykinase activity increased following all hormone treatments, which may suggest gluconeogenic function; E also increased 3-hydroxybutyrate dehydrogenase activity, suggesting a function in ketogenesis, and decreased pepck and fkbp5 transcript abundance, potentially showing some metabolic regulation. Overall, we demonstrate hormonal control of hepatic energy balance using liver perfusions at various levels of biological organization in an elasmobranch.


Assuntos
Squalus acanthias , Squalus , Animais , Glucose/metabolismo , Squalus/metabolismo , Squalus acanthias/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Fosfoenolpiruvato/metabolismo , Fígado/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Gluconeogênese , Hormônios/metabolismo , Corticosteroides/metabolismo
3.
Pestic Biochem Physiol ; 199: 105766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458675

RESUMO

Bemisia tabaci (Gennadius) is one of the most dangerous polyphagous pests in the world causing damage to various crops by sucking sap during the nymphal and adult stages. Chemical management of whiteflies is challenging because of the emergence of pesticide resistance. RNA interference has been well established in whitefly to study the functions of various genes. G-protein coupled receptors (GPCRs) are important targets for development of new generation insecticides. In this study, Ecdysis triggering hormone receptor (ETHr) gene expression was recorded in different stages of whitefly and its function has been studied through RNAi. The expression of ETHr is highest in third-instar nymphs followed by other nymphal instars, pupae and newly emerged adults. Silencing of ETHr resulted in significantly higher adult mortality (68.88%), reduced fecundity (4.46 eggs /female), reduced longevity of male and female (1.05 and 1.40 days, respectively) when adults were fed with dsETHr @ 1.0 µg/µl. Silencing of ETHr in nymphs lead to significantly higher mortality (81.35%) as compared to control. This study confirms that ETHr gene is essential for growth and development of whitefly nymphs and adults. Hence, it can be future target for developing dsRNA based insecticides for management of whitefly.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Muda/genética , Reprodução/genética , Hormônios/metabolismo , Hemípteros/fisiologia
4.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503280

RESUMO

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Assuntos
Colesterol , Hormônios , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Colesterol/metabolismo , Hormônios/genética , Hormônios/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo
5.
Methods Mol Biol ; 2758: 151-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549013

RESUMO

Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.


Assuntos
Neuropeptídeos , Proteômica , Perfilação da Expressão Gênica , Hormônios/metabolismo , Biologia Computacional/métodos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo
6.
Plant Physiol Biochem ; 208: 108521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484680

RESUMO

The Agrobacterium rhizogenes root oncogenic locus (rol) genes interfere with hormone balance by altering their synthesis and/or recognition, giving rise to varied impacts on the physiological characteristics of plants and cell cultures. The homolog of the rolB and rolC genes from Ipomoea batatas, named Ib-rolB/C, similarly induces morphological and physiological alterations in transgenic Arabidopsis thaliana; however, its role in plant hormonal homeostasis has not been previously defined. In this study, we found that external application of salicylic acid (SA) and methyl jasmonate (MeJA) significantly upregulated Ib-rolB/C in detached I. batatas leaves. Furthermore, heterologous expression of Ib-rolB/C in A. thaliana markedly enhanced the accumulation of SA and MeJA, and to a lesser extent, elevated abscisic acid (ABA) levels, through the modulation of genes specific to hormone biosynthesis. Even though the RolB/RolC homolog protein has a notable structural resemblance to the RolB protein from A. rhizogenes, it exhibits a distinct localization pattern, predominantly residing in the cytoplasm and certain discrete subcellular structures, instead of the nucleus. Consequently, the functions of RolB/RolC in both naturally and artificially transgenic plants are linked to changes in the hormonal state of the cells, though the underlying signaling pathways remain to be elucidated.


Assuntos
Acetatos , Arabidopsis , Ciclopentanos , Ipomoea batatas , Oxilipinas , Arabidopsis/genética , Ipomoea batatas/genética , Ácido Salicílico/farmacologia , Vias Biossintéticas , Plantas Geneticamente Modificadas/metabolismo , Hormônios/metabolismo
7.
BMC Genomics ; 25(1): 320, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549066

RESUMO

BACKGROUND: Stigma exsertion is an essential agricultural trait that can promote cross-pollination to improve hybrid seed production efficiency. However, the molecular mechanism controlling stigma exsertion remains unknown. RESULTS: In this study, the Nicotiana tabacum cv. K326 and its two homonuclear-heteroplasmic lines, MSK326 (male-sterile) and MSK326SE (male-sterile and stigma exserted), were used to investigate the mechanism of tobacco stigma exsertion. A comparison of the flowers between the three lines showed that the stigma exsertion of MSK326SE was mainly due to corolla shortening. Therefore, the corollas of the three lines were sampled and presented for RNA-seq analysis, which found 338 candidate genes that may cause corolla shortening. These genes were equally expressed in K326 and MSK326, but differentially expressed in MSK326SE. Among these 338 genes, 15 were involved in hormone synthesis or signal transduction pathways. Consistently, the content of auxin, dihydrozeatin, gibberellin, and jasmonic acid was significantly decreased in the MSK326SE corolla, whereas abscisic acid levels were significantly increased. Additionally, seven genes involved in cell division, cell cycle, or cell expansion were identified. Protein-protein interaction network analysis identified 45 nodes and 79 protein interactions, and the largest module contained 20 nodes and 52 protein interactions, mainly involved in the hormone signal transduction and pathogen defensive pathways. Furthermore, a putative hub gene coding a serine/threonine-protein kinase was identified for the network. CONCLUSIONS: Our results suggest that hormones may play a key role in regulating tobacco stigma exsertion induced by corolla shortening.


Assuntos
Tabaco , Transcriptoma , Tabaco/genética , Revelação , Ácidos Indolacéticos/metabolismo , Hormônios/metabolismo , Flores/metabolismo
8.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436777

RESUMO

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Feminino , Cobre/toxicidade , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Hormônios/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474136

RESUMO

OVATE family proteins (OFPs) play important roles in plant growth and development, hormone signaling, and stress response pathways. However, the functions of OsOFPs in rice are largely unknown. In this study, a novel gain-of-function rice mutant, Osofp6-D, was identified. This mutant exhibited decreased plant height, erect leaves, reduced panicle size, short and wide seeds, delayed seed germination time, and reduced fertility. These phenotypic changes were attributed to the increased expression of OsOFP6, which was caused by a T-DNA insertion. Complementation of the Osofp6-D phenotype by knockout of OsOFP6 using the CRISPR/Cas9 system confirmed that the Osofp6-D phenotype was caused by OsOFP6 overexpression. In addition, transgenic plants overexpressing OsOFP6 with the 35S promoter mimicked the Osofp6-D phenotype. Cytological observations of the glumes showed that OsOFP6 overexpression altered the grain shape, mainly by altering the cell shape. Hormone response experiments showed that OsOFP6 was involved in the gibberellin (GA) and brassinolide (BR) signaling responses. Further studies revealed that OsOFP6 interacts with E3BB, which is orthologous to the Arabidopsis central organ size-control protein BIG BROTHER (BB). This study further elucidates the regulation mechanism of the rice OFP family on plant architecture and grain shape.


Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Grão Comestível/genética , Sementes/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Hormônios/metabolismo , Oryza/genética , Regulação da Expressão Gênica de Plantas
10.
Nat Commun ; 15(1): 2188, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467625

RESUMO

Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.


Assuntos
Cheirogaleidae , Animais , Cheirogaleidae/genética , Cheirogaleidae/metabolismo , Transcriptoma/genética , Evolução Biológica , Hormônios/metabolismo
11.
Plant Signal Behav ; 19(1): 2329487, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493506

RESUMO

E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.


Assuntos
Eucommiaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transcriptoma/genética , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hormônios/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética
12.
BMC Genomics ; 25(1): 309, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528494

RESUMO

BACKGROUND: Incubation behaviour, an instinct for natural breeding in poultry, is strictly controlled by the central nervous system and multiple neuroendocrine hormones and neurotransmitters, and is closely associated with the cessation of egg laying. Therefore, it is essential for the commercial poultry industry to clarify the molecular regulation mechanism of incubation behaviour. Here, we used high-throughput sequencing technology to examine the pituitary transcriptome of Changshun green-shell laying hen, a local breed from Guizhou province, China, with strong broodiness, in two reproductive stages, including egg-laying phase (LP) and incubation phase (BP). We also analyze the differences in gene expression during the transition from egg-laying to incubation, and identify critical pathways and candidate genes involved in controlling the incubation behaviour in the pituitary. RESULTS: In this study, we demonstrated that a total of 2089 differently expressed genes (DEGs) were identified in the pituitary, including 842 up-regulated and 1247 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that steroid biosynthesis pathway and neuroactive ligand-receptor interaction were significantly enriched based on DEGs commonly identified in pituitary. Further analysis revealed that SRC, ITGB4, ITGB3, PIK3R3 and DRD2 may play crucial roles in the regulation of incubation behaviour. CONCLUSIONS: We identified 2089 DEGs and the key signaling pathways which may be closely correlated with incubation in Changshun green-shell laying hens, and clarified the molecular regulation mechanism of incubation behaviour. Our results indicate the complexity and variety of differences in reproductive behaviour of different chicken breeds.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Galinhas/metabolismo , Perfilação da Expressão Gênica , Hipófise/metabolismo , Hormônios/metabolismo
13.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429670

RESUMO

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


Assuntos
MicroRNAs , Plântula , Plântula/genética , Plântula/metabolismo , Medicago sativa/genética , Óxido Nítrico/metabolismo , Secas , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
14.
Plant Physiol Biochem ; 209: 108533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520967

RESUMO

Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 µM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.


Assuntos
Acetatos , Ciclopentanos , Oxilipinas , Plantago , Selênio , Selênio/farmacologia , Selênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantago/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Polifenóis/metabolismo , Hormônios/metabolismo
15.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391176

RESUMO

Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurogênese/genética , Hormônios/metabolismo , Esteroides/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento
16.
Stem Cell Res Ther ; 15(1): 49, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378684

RESUMO

BACKGROUND: Clinically, hormone replacement therapy (HRT) is the main treatment for primary ovarian insufficiency (POI). However, HRT may increase the risk of both breast cancer and cardiovascular disease. Exosomes derived from human umbilical cord mesenchymal stem cell (hUC-MSC) have been gradually applied to the therapy of a variety of diseases through inflammation inhibition, immune regulation, and tissue repair functions. However, the application and study of hUC-MSC exosomes in POI remain limited. METHODS: Here, we first constructed four rat animal models: the POI-C model (the "cyclophosphamide-induced" POI model via intraperitoneal injection), the POI-B model (the "busulfan-induced" POI model), the POI-U model (the "cyclophosphamide-induced" POI model under ultrasonic guidance), and MS model (the "maternal separation model"). Second, we compared the body weight, ovarian index, status, Rat Grimace Scale, complications, and mortality rate of different POI rat models. Finally, a transabdominal ultrasound-guided injection of hUC-MSC exosomes was performed, and its therapeuticy effects on the POI animal models were evaluated, including changes in hormone levels, oestrous cycles, ovarian apoptosis levels, and fertility. In addition, we performed RNA-seq to explore the possible mechanism of hUC-MSC exosomes function. RESULTS: Compared with the POI-C, POI-B, and MS animal models, the POI-U model showed less fluctuation in weight, a lower ovarian index, fewer complications, a lower mortality rate, and a higher model success rate. Second, we successfully identified hUC-MSCs and their exosomes, and performed ultrasound-guided intraovarian hUC-MSCs exosomes injection. Finally, we confirmed that the ultrasound-guided exosome injection (termed POI-e) effectively improved ovarian hormone levels, the oestrous cycle, ovarian function, and fertility. Mechanically, hUC-MSCs may play a therapeutic role by regulating ovarian immune and metabolic functions. CONCLUSIONS: In our study, we innovatively constructed an ultrasound-guided ovarian drug injection method to construct POI-U animal models and hUC-MSC exosomes injection. And we confirmed the therapeutic efficacy of hUC-MSC exosomes on the POI-U animal models. Our study will offer a better choice for new animal models of POI in the future and provides certain guidance for the hUC-MSCs exosome therapy in POI patients.


Assuntos
Exossomos , Insuficiência Ovariana Primária , Feminino , Ratos , Humanos , Animais , Insuficiência Ovariana Primária/diagnóstico por imagem , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/metabolismo , Privação Materna , Exossomos/metabolismo , Ciclofosfamida , Modelos Animais de Doenças , Ultrassonografia de Intervenção , Hormônios/metabolismo , Cordão Umbilical
17.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396651

RESUMO

Ovule abortion, which is the main cause of empty burs in the Chinese chestnut, affects the formation of embryos and further reduces yield; therefore, it is important to study the mechanism of ovule abortion. In this study, we analyzed the transcriptomic and metabolomic data of ovules at critical developmental stages to explore the key regulatory networks affecting ovule development. The metabolites were enriched mainly in pathways involved in phytohormone signaling, energy metabolism, and amino acid synthesis in the endoplasmic reticulum. Analysis of the differentially expressed genes (DEGs) revealed that the HSP genes were significantly down-regulated during fertilization, indicating that this process is extremely sensitive to temperature. The hormone and sucrose contents of ovules before and after fertilization and of fertile and abortive ovules at different developmental stages showed significant differences, and it is hypothesized that that abnormal temperature may disrupt hormone synthesis, affecting the synthesis and catabolism of sucrose and ultimately resulting in the abortive development of Chinese chestnut ovules. At the pollination and fertilization stage of chestnuts, spraying with ethylene, ACC, and AIB significantly increased the number of developing fruit in each prickly pod compared to CK (water) treatment. These results indicated that both ethylene and ACC increased the rate of ovule development. This study provides an important theoretical molecular basis for the subsequent regulation of ovule development and nut yield in the Chinese chestnut.


Assuntos
Perfilação da Expressão Gênica , Óvulo Vegetal , Óvulo Vegetal/metabolismo , Etilenos/metabolismo , Hormônios/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
18.
PeerJ ; 12: e16873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348101

RESUMO

Background: Plant hormones influence phenology, development, and function of above and belowground plant structures. In seedlings, auxin influences the initiation and development of lateral roots and root systems. How auxin-related genes influence root initiation at early life stages has been investigated from numerous perspectives. There is a gap in our understanding of how these genes influence root size through the life cycle and in mature plants. Across development, the influence of a particular gene on plant phenotypes is partly regulated by the addition of a poly-A tail to mRNA transcripts via alternative polyadenylation (APA). Auxin related genes have documented variation in APA, with auxin itself contributing to APA site switches. Studies of the influence of exogenous auxin on natural plant accessions and mutants of auxin pathway gene families exhibiting variation in APA are required for a more complete understanding of genotype by development by hormone interactions in whole plant and fitness traits. Methods: We studied Arabidopsis thaliana homozygous mutant lines with inserts in auxin-related genes previously identified to exhibit variation in number of APA sites. Our growth chamber experiment included wildtype Col-0 controls, mutant lines, and natural accession phytometers. We applied exogenous auxin through the life cycle. We quantified belowground and aboveground phenotypes in 14 day old, 21 day old seedlings and plants at reproductive maturity. We contrasted root, rosette and flowering phenotypes across wildtype, auxin mutant, and natural accession lines, APA groups, hormone treatments, and life stages using general linear models. Results: The root systems and rosettes of mutant lines in auxin related genes varied in response to auxin applications across life stages and varied between genotypes within life stages. In seedlings, exposure to auxin decreased size, but increased lateral root density, whereas at reproductive maturity, plants displayed greater aboveground mass and total root length. These differences may in part be due to a shift which delayed the reproductive stage when plants were treated with auxin. Root traits of auxin related mutants depended on the number of APA sites of mutant genes and the plant's developmental stage. Mutants with inserts in genes with many APA sites exhibited lower early seedling belowground biomass than those with few APA sites but only when exposed to exogenous auxin. As we observed different responses to exogenous auxin across the life cycle, we advocate for further studies of belowground traits and hormones at reproductive maturity. Studying phenotypic variation of genotypes across life stages and hormone environments will uncover additional shared patterns across traits, assisting efforts to potentially reach breeding targets and enhance our understanding of variation of genotypes in natural systems.


Assuntos
Arabidopsis , Arabidopsis/genética , Ácidos Indolacéticos/farmacologia , Plântula/genética , Raízes de Plantas/genética , Melhoramento Vegetal , Fenótipo , Hormônios/metabolismo
19.
Aging (Albany NY) ; 16(4): 3612-3630, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38364249

RESUMO

PURPOSE: The age-induced imbalance in ecological niches leads to the loss of GSCs, which is the main reason for ovarian germline senescence. Ginsenoside Rg1 can delay ovarian senescence. Here, we shed light on new insights of ginsenoside Rg1 in regulating the niche to maintain GSCs self-renewal and discussing related molecular mechanisms. METHODS: The differences among GSC number, reproductive capacity of naturally aging female Drosophila after ginsenoside Rg1 feeding were analyzed by immunofluorescence and behavior monitoring. The expressions of the active factors in the niche and the BMP signaling were analyzed through Western blot and RT-qPCR. The target effect was verified in the ECR mutant and combined with the molecular docking. RESULTS: Ginsenoside Rg1 inhibited the age-induced reduction of the GSCs number and restored offspring production and development. Ginsenoside Rg1 promoted the expression of anchor proteins E-cadherin, stemness maintenance factor Nos and differentiation promoting factor Bam, thereby GSCs niche homeostasis was regulated. In addition, ginsenoside Rg1 was bound to the LBD region of the hormone receptor ECR. Ginsenoside Rg1 promotes the regeneration of GSCs by targeting the ECR to increase pSmad1/5/8 expression and thereby activating the BMP signaling pathway. In addition, ginsenoside Rg1 maintenance of niche homeostasis to promote GSCs regeneration is dependent on ECR as demonstrated in ECR mutants. CONCLUSIONS: Ginsenoside Rg1 regulated the ecological niche homeostasis of GSCs and promoted the regeneration of GSCs by targeting the ECR/BMP signaling pathway in hormone-deficient states in aging ovaries. It is of great significance for prolonging fertility potential and delaying ovarian senescence.


Assuntos
Proteínas de Drosophila , Drosophila , Ginsenosídeos , Animais , Feminino , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Simulação de Acoplamento Molecular , Células-Tronco/metabolismo , Transdução de Sinais , Hormônios/metabolismo , Células Germinativas
20.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363403

RESUMO

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Assuntos
Ácido Abscísico , Scutellaria baicalensis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Filogenia , Melhoramento Vegetal , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...